home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
CU Amiga Super CD-ROM 16
/
CU Amiga Magazine's Super CD-ROM 16 (1997-10-16)(EMAP Images)(GB)[!][issue 1997-11].iso
/
CUCD
/
Graphics
/
Ghostscript
/
source
/
gdevm1.c
< prev
next >
Wrap
C/C++ Source or Header
|
1997-05-17
|
22KB
|
686 lines
/* Copyright (C) 1989, 1995, 1996 Aladdin Enterprises. All rights reserved.
This file is part of Aladdin Ghostscript.
Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing. Refer to the Aladdin Ghostscript Free Public
License (the "License") for full details.
Every copy of Aladdin Ghostscript must include a copy of the License,
normally in a plain ASCII text file named PUBLIC. The License grants you
the right to copy, modify and redistribute Aladdin Ghostscript, but only
under certain conditions described in the License. Among other things, the
License requires that the copyright notice and this notice be preserved on
all copies.
*/
/* gdevm1.c */
/* Monobit "memory" (stored bitmap) device */
#include "memory_.h"
#include "gx.h"
#include "gxdevice.h"
#include "gxdevmem.h" /* semi-public definitions */
#include "gdevmem.h" /* private definitions */
extern dev_proc_strip_copy_rop(mem_mono_strip_copy_rop); /* in gdevmrop.c */
/* Optionally, use the slow RasterOp implementations for testing. */
/*#define USE_COPY_ROP*/
#ifdef USE_COPY_ROP
#include "gsrop.h"
#endif
/* ================ Standard (byte-oriented) device ================ */
/* We went to a lot of trouble to optimize mem_mono_tile_rectangle. */
/* It has a substantial effect on the total time at high resolutions. */
/* However, it takes quite a lot of code, so we omit it on 16-bit systems. */
#define OPTIMIZE_TILE (arch_sizeof_int > 2)
/* Procedures */
private dev_proc_map_rgb_color(mem_mono_map_rgb_color);
private dev_proc_map_color_rgb(mem_mono_map_color_rgb);
private dev_proc_copy_mono(mem_mono_copy_mono);
private dev_proc_fill_rectangle(mem_mono_fill_rectangle);
#if OPTIMIZE_TILE
private dev_proc_strip_tile_rectangle(mem_mono_strip_tile_rectangle);
#else
# define mem_mono_strip_tile_rectangle gx_default_strip_tile_rectangle
#endif
/* The device descriptor. */
/* The instance is public. */
const gx_device_memory far_data mem_mono_device =
mem_full_alpha_device("image1", 0, 1, mem_open,
mem_mono_map_rgb_color, mem_mono_map_color_rgb,
mem_mono_copy_mono, gx_default_copy_color, mem_mono_fill_rectangle,
mem_get_bits, gx_default_map_cmyk_color, gx_no_copy_alpha,
mem_mono_strip_tile_rectangle, mem_mono_strip_copy_rop);
/* Map color to/from RGB. This may be inverted. */
private gx_color_index
mem_mono_map_rgb_color(gx_device *dev, gx_color_value r, gx_color_value g,
gx_color_value b)
{ return (gx_default_w_b_map_rgb_color(dev, r, g, b) ^
mdev->palette.data[0]) & 1;
}
private int
mem_mono_map_color_rgb(gx_device *dev, gx_color_index color,
gx_color_value prgb[3])
{ return gx_default_w_b_map_color_rgb(dev,
(color ^ mdev->palette.data[0]) & 1,
prgb);
}
/* Fill a rectangle with a color. */
private int
mem_mono_fill_rectangle(gx_device *dev, int x, int y, int w, int h,
gx_color_index color)
{
#ifdef USE_COPY_ROP
return mem_mono_copy_rop(dev, NULL, 0, 0, gx_no_bitmap_id, NULL,
NULL, NULL,
x, y, w, h, 0, 0,
(color ? rop3_1 : rop3_0));
#else
fit_fill(dev, x, y, w, h);
bits_fill_rectangle(scan_line_base(mdev, y), x, mdev->raster,
-(mono_fill_chunk)color, w, h);
return 0;
#endif
}
/* Convert x coordinate to byte offset in scan line. */
#define x_to_byte(x) ((x) >> 3)
/* Copy a monochrome bitmap. */
#undef mono_masks
#define mono_masks mono_copy_masks
/* Fetch a chunk from the source. */
/* The source data are always stored big-endian. */
/* Note that the macros always cast cptr, */
/* so it doesn't matter what the type of cptr is. */
/* cshift = chunk_bits - shift. */
#undef chunk
#if arch_is_big_endian
# define chunk uint
# define cfetch_right(cptr, shift, cshift)\
(cfetch_aligned(cptr) >> shift)
# define cfetch_left(cptr, shift, cshift)\
(cfetch_aligned(cptr) << shift)
/* Fetch a chunk that straddles a chunk boundary. */
# define cfetch2(cptr, cskew, skew)\
(cfetch_left(cptr, cskew, skew) +\
cfetch_right((const chunk *)(cptr) + 1, skew, cskew))
#else /* little-endian */
# define chunk bits16
private const bits16 right_masks2[9] = {
0xffff, 0x7f7f, 0x3f3f, 0x1f1f, 0x0f0f, 0x0707, 0x0303, 0x0101, 0x0000
};
private const bits16 left_masks2[9] = {
0xffff, 0xfefe, 0xfcfc, 0xf8f8, 0xf0f0, 0xe0e0, 0xc0c0, 0x8080, 0x0000
};
# define ccont(cptr, off) (((const chunk *)(cptr))[off])
# define cfetch_right(cptr, shift, cshift)\
((shift) < 8 ?\
((ccont(cptr, 0) >> (shift)) & right_masks2[shift]) +\
(ccont(cptr, 0) << (cshift)) :\
((chunk)*(const byte *)(cptr) << (cshift)) & 0xff00)
# define cfetch_left(cptr, shift, cshift)\
((shift) < 8 ?\
((ccont(cptr, 0) << (shift)) & left_masks2[shift]) +\
(ccont(cptr, 0) >> (cshift)) :\
((ccont(cptr, 0) & 0xff00) >> (cshift)) & 0xff)
/* Fetch a chunk that straddles a chunk boundary. */
/* We can avoid testing the shift amount twice */
/* by expanding the cfetch_left/right macros in-line. */
# define cfetch2(cptr, cskew, skew)\
((cskew) < 8 ?\
((ccont(cptr, 0) << (cskew)) & left_masks2[cskew]) +\
(ccont(cptr, 0) >> (skew)) +\
(((chunk)(((const byte *)(cptr))[2]) << (cskew)) & 0xff00) :\
(((ccont(cptr, 0) & 0xff00) >> (skew)) & 0xff) +\
((ccont(cptr, 1) >> (skew)) & right_masks2[skew]) +\
(ccont(cptr, 1) << (cskew)))
#endif
/* Since source and destination are both always big-endian, */
/* fetching an aligned chunk never requires byte swapping. */
# define cfetch_aligned(cptr)\
(*(const chunk *)(cptr))
/* copy_function and copy_shift get added together for dispatch */
typedef enum {
copy_or = 0, copy_store, copy_and, copy_funny
} copy_function;
/* copy_right/left is not an enum, because compilers complain about */
/* an enumeration clash when these are added to a copy_function. */
#define copy_right ((copy_function)0)
#define copy_left ((copy_function)4)
typedef struct {
short invert;
ushort op; /* copy_function */
} copy_mode;
/* Map from <c0,c1> to copy_mode. */
#define cm(i,op) { i, (ushort)op }
private copy_mode copy_modes[9] = {
cm(-1, copy_funny), /* NN */
cm(-1, copy_and), /* N0 */
cm(0, copy_or), /* N1 */
cm(0, copy_and), /* 0N */
cm(0, copy_funny), /* 00 */
cm(0, copy_store), /* 01 */
cm(-1, copy_or), /* 1N */
cm(-1, copy_store), /* 10 */
cm(0, copy_funny), /* 11 */
};
private int
mem_mono_copy_mono(gx_device *dev,
const byte *base, int sourcex, int sraster, gx_bitmap_id id,
int x, int y, int w, int h, gx_color_index zero, gx_color_index one)
{
#ifdef USE_COPY_ROP
return mem_mono_copy_rop(dev, base, sourcex, sraster, id, NULL,
NULL, NULL,
x, y, w, h, 0, 0,
((zero == gx_no_color_index ? rop3_D :
zero == 0 ? rop3_0 : rop3_1) & ~rop3_S) |
((one == gx_no_color_index ? rop3_D :
one == 0 ? rop3_0 : rop3_1) & rop3_S));
#else /* !USE_COPY_ROP */
register const byte *bptr; /* actually chunk * */
int dbit, wleft;
uint mask;
copy_mode mode;
#define function (copy_function)(mode.op)
declare_scan_ptr_as(dbptr, byte *);
#define optr ((chunk *)dbptr)
register int skew;
register uint invert;
fit_copy(dev, base, sourcex, sraster, id, x, y, w, h);
#if gx_no_color_index_value != -1 /* hokey! */
if ( zero == gx_no_color_index ) zero = -1;
if ( one == gx_no_color_index ) one = -1;
#endif
#define izero (int)zero
#define ione (int)one
mode = copy_modes[izero + izero + izero + ione + 4];
#undef izero
#undef ione
invert = (uint)(int)mode.invert; /* load register */
setup_rect_as(dbptr, byte *);
bptr = base + ((sourcex & ~chunk_align_bit_mask) >> 3);
dbit = x & chunk_align_bit_mask;
skew = dbit - (sourcex & chunk_align_bit_mask);
/* Macros for writing partial chunks. */
/* The destination pointer is always named optr, */
/* and must be declared as chunk *. */
/* cinvert may be temporarily redefined. */
#define cinvert(bits) ((bits) ^ invert)
#define write_or_masked(bits, mask, off)\
optr[off] |= (cinvert(bits) & mask)
#define write_store_masked(bits, mask, off)\
optr[off] = ((optr[off] & ~mask) | (cinvert(bits) & mask))
#define write_and_masked(bits, mask, off)\
optr[off] &= (cinvert(bits) | ~mask)
/* Macros for writing full chunks. */
#define write_or(bits) *optr |= cinvert(bits)
#define write_store(bits) *optr = cinvert(bits)
#define write_and(bits) *optr &= cinvert(bits)
/* Macro for incrementing to next chunk. */
#define next_x_chunk\
bptr += chunk_bytes; dbptr += chunk_bytes
/* Common macro for the end of each scan line. */
#define end_y_loop(sdelta, ddelta)\
if ( --h == 0 ) break;\
bptr += sdelta; dbptr += ddelta
if ( (wleft = w + dbit - chunk_bits) <= 0 )
{ /* The entire operation fits in one (destination) chunk. */
set_mono_thin_mask(mask, w, dbit);
#define write_single(wr_op, src)\
for ( ; ; )\
{ wr_op(src, mask, 0);\
end_y_loop(sraster, draster);\
}
#define write1_loop(src)\
switch ( function ) {\
case copy_or: write_single(write_or_masked, src); break;\
case copy_store: write_single(write_store_masked, src); break;\
case copy_and: write_single(write_and_masked, src); break;\
default: goto funny;\
}
if ( skew >= 0 ) /* single -> single, right/no shift */
{ if ( skew == 0 ) /* no shift */
{ write1_loop(cfetch_aligned(bptr));
}
else /* right shift */
{ int cskew = chunk_bits - skew;
write1_loop(cfetch_right(bptr, skew, cskew));
}
}
else if ( wleft <= skew ) /* single -> single, left shift */
{ int cskew = chunk_bits + skew;
skew = -skew;
write1_loop(cfetch_left(bptr, skew, cskew));
}
else /* double -> single */
{ int cskew = -skew;
skew += chunk_bits;
write1_loop(cfetch2(bptr, cskew, skew));
}
#undef write1_loop
#undef write_single
}
else if ( wleft <= skew )
{ /* 1 source chunk -> 2 destination chunks. */
/* This is an important special case for */
/* both characters and halftone tiles. */
uint rmask;
int cskew = chunk_bits - skew;
set_mono_left_mask(mask, dbit);
set_mono_right_mask(rmask, wleft);
#undef cinvert
#define cinvert(bits) (bits) /* pre-inverted here */
#if arch_is_big_endian /* no byte swapping */
# define write_1to2(wr_op)\
for ( ; ; )\
{ register uint bits = cfetch_aligned(bptr) ^ invert;\
wr_op(bits >> skew, mask, 0);\
wr_op(bits << cskew, rmask, 1);\
end_y_loop(sraster, draster);\
}
#else /* byte swapping */
# define write_1to2(wr_op)\
for ( ; ; )\
{ wr_op(cfetch_right(bptr, skew, cskew) ^ invert, mask, 0);\
wr_op(cfetch_left(bptr, cskew, skew) ^ invert, rmask, 1);\
end_y_loop(sraster, draster);\
}
#endif
switch ( function )
{
case copy_or: write_1to2(write_or_masked); break;
case copy_store: write_1to2(write_store_masked); break;
case copy_and: write_1to2(write_and_masked); break;
default: goto funny;
}
#undef cinvert
#define cinvert(bits) ((bits) ^ invert)
#undef write_1to2
}
else
{ /* More than one source chunk and more than one */
/* destination chunk are involved. */
uint rmask;
int words = (wleft & ~chunk_bit_mask) >> 3;
uint sskip = sraster - words;
uint dskip = draster - words;
register uint bits;
set_mono_left_mask(mask, dbit);
set_mono_right_mask(rmask, wleft & chunk_bit_mask);
if ( skew == 0 ) /* optimize the aligned case */
{
#define write_aligned(wr_op, wr_op_masked)\
for ( ; ; )\
{ int count = wleft;\
/* Do first partial chunk. */\
wr_op_masked(cfetch_aligned(bptr), mask, 0);\
/* Do full chunks. */\
while ( (count -= chunk_bits) >= 0 )\
{ next_x_chunk; wr_op(cfetch_aligned(bptr)); }\
/* Do last chunk */\
if ( count > -chunk_bits )\
{ wr_op_masked(cfetch_aligned(bptr + chunk_bytes), rmask, 1); }\
end_y_loop(sskip, dskip);\
}
switch ( function )
{
case copy_or:
write_aligned(write_or, write_or_masked);
break;
case copy_store:
write_aligned(write_store, write_store_masked);
break;
case copy_and:
write_aligned(write_and, write_and_masked);
break;
default:
goto funny;
}
#undef write_aligned
}
else /* not aligned */
{ int ccase =
(skew >= 0 ? copy_right :
((bptr += chunk_bytes), copy_left))
+ (int)function;
int cskew = -skew & chunk_bit_mask;
skew &= chunk_bit_mask;
for ( ; ; )
{ int count = wleft;
#define prefetch_right\
bits = cfetch_right(bptr, skew, cskew)
#define prefetch_left\
bits = cfetch2(bptr - chunk_bytes, cskew, skew)
#define write_unaligned(wr_op, wr_op_masked)\
wr_op_masked(bits, mask, 0);\
/* Do full chunks. */\
while ( count >= chunk_bits )\
{ bits = cfetch2(bptr, cskew, skew);\
next_x_chunk; wr_op(bits); count -= chunk_bits;\
}\
/* Do last chunk */\
if ( count > 0 )\
{ bits = cfetch_left(bptr, cskew, skew);\
if ( count > skew ) bits += cfetch_right(bptr + chunk_bytes, skew, cskew);\
wr_op_masked(bits, rmask, 1);\
}
switch ( ccase )
{
case copy_or + copy_left:
prefetch_left; goto uor;
case copy_or + copy_right:
prefetch_right;
uor: write_unaligned(write_or, write_or_masked);
break;
case copy_store + copy_left:
prefetch_left; goto ustore;
case copy_store + copy_right:
prefetch_right;
ustore: write_unaligned(write_store, write_store_masked);
break;
case copy_and + copy_left:
prefetch_left; goto uand;
case copy_and + copy_right:
prefetch_right;
uand: write_unaligned(write_and, write_and_masked);
break;
default:
goto funny;
}
end_y_loop(sskip, dskip);
#undef write_unaligned
#undef prefetch_left
#undef prefetch_right
}
}
}
#undef end_y_loop
#undef next_x_chunk
return 0;
/* Handle the funny cases that aren't supposed to happen. */
funny: return (invert ? gs_note_error(-1) :
mem_mono_fill_rectangle(dev, x, y, w, h, zero));
#undef optr
#endif /* !USE_COPY_ROP */
}
#if OPTIMIZE_TILE /**************** ****************/
/* Strip-tile with a monochrome halftone. */
/* This is a performance bottleneck for monochrome devices, */
/* so we re-implement it, even though it takes a lot of code. */
private int
mem_mono_strip_tile_rectangle(gx_device *dev,
register const gx_strip_bitmap *tiles,
int tx, int y, int tw, int th, gx_color_index color0, gx_color_index color1,
int px, int py)
{
#ifdef USE_COPY_ROP
return mem_mono_strip_copy_rop(dev, NULL, 0, 0, tile->id, NULL,
tiles, NULL,
tx, y, tw, th, px, py,
((color0 == gx_no_color_index ? rop3_D :
color0 == 0 ? rop3_0 : rop3_1) & ~rop3_T) |
((color1 == gx_no_color_index ? rop3_D :
color1 == 0 ? rop3_0 : rop3_1) & rop3_T));
#else /* !USE_COPY_ROP */
register uint invert;
int sraster;
uint tile_bits_size;
const byte *base;
const byte *end;
int x, rw, w, h;
register const byte *bptr; /* actually chunk * */
int dbit, wleft;
uint mask;
byte *dbase;
declare_scan_ptr_as(dbptr, byte *);
#define optr ((chunk *)dbptr)
register int skew;
/* This implementation doesn't handle strips yet. */
if ( color0 != (color1 ^ 1) || tiles->shift != 0 )
return gx_default_strip_tile_rectangle(dev, tiles, tx, y, tw, th,
color0, color1, px, py);
fit_fill(dev, tx, y, tw, th);
invert = -(uint)color0;
sraster = tiles->raster;
base = tiles->data + ((y + py) % tiles->rep_height) * sraster;
tile_bits_size = tiles->size.y * sraster;
end = tiles->data + tile_bits_size;
#undef end_y_loop
#define end_y_loop(sdelta, ddelta)\
if ( --h == 0 ) break;\
if ( end - bptr <= sdelta ) /* wrap around */\
bptr -= tile_bits_size;\
bptr += sdelta; dbptr += ddelta
draster = mdev->raster;
dbase = scan_line_base(mdev, y);
x = tx;
rw = tw;
/*
* The outermost loop here works horizontally, one iteration per
* copy of the tile. Note that all iterations except the first
* have sourcex = 0.
*/
{ int sourcex = (x + px) % tiles->rep_width;
w = tiles->size.x - sourcex;
bptr = base + ((sourcex & ~chunk_align_bit_mask) >> 3);
dbit = x & chunk_align_bit_mask;
skew = dbit - (sourcex & chunk_align_bit_mask);
}
outer: if ( w > rw )
w = rw;
h = th;
dbptr = dbase + ((x >> 3) & -chunk_align_bytes);
if ( (wleft = w + dbit - chunk_bits) <= 0 )
{ /* The entire operation fits in one (destination) chunk. */
set_mono_thin_mask(mask, w, dbit);
#define write1_loop(src)\
for ( ; ; )\
{ write_store_masked(src, mask, 0);\
end_y_loop(sraster, draster);\
}
if ( skew >= 0 ) /* single -> single, right/no shift */
{ if ( skew == 0 ) /* no shift */
{ write1_loop(cfetch_aligned(bptr));
}
else /* right shift */
{ int cskew = chunk_bits - skew;
write1_loop(cfetch_right(bptr, skew, cskew));
}
}
else if ( wleft <= skew ) /* single -> single, left shift */
{ int cskew = chunk_bits + skew;
skew = -skew;
write1_loop(cfetch_left(bptr, skew, cskew));
}
else /* double -> single */
{ int cskew = -skew;
skew += chunk_bits;
write1_loop(cfetch2(bptr, cskew, skew));
}
#undef write1_loop
}
else if ( wleft <= skew )
{ /* 1 source chunk -> 2 destination chunks. */
/* This is an important special case for */
/* both characters and halftone tiles. */
uint rmask;
int cskew = chunk_bits - skew;
set_mono_left_mask(mask, dbit);
set_mono_right_mask(rmask, wleft);
#if arch_is_big_endian /* no byte swapping */
#undef cinvert
#define cinvert(bits) (bits) /* pre-inverted here */
for ( ; ; )
{ register uint bits = cfetch_aligned(bptr) ^ invert;
write_store_masked(bits >> skew, mask, 0);
write_store_masked(bits << cskew, rmask, 1);
end_y_loop(sraster, draster);
}
#undef cinvert
#define cinvert(bits) ((bits) ^ invert)
#else /* byte swapping */
for ( ; ; )
{ write_store_masked(cfetch_right(bptr, skew, cskew), mask, 0);
write_store_masked(cfetch_left(bptr, cskew, skew), rmask, 1);
end_y_loop(sraster, draster);
}
#endif
}
else
{ /* More than one source chunk and more than one */
/* destination chunk are involved. */
uint rmask;
int words = (wleft & ~chunk_bit_mask) >> 3;
uint sskip = sraster - words;
uint dskip = draster - words;
register uint bits;
#define next_x_chunk\
bptr += chunk_bytes; dbptr += chunk_bytes
set_mono_right_mask(rmask, wleft & chunk_bit_mask);
if ( skew == 0 ) /* optimize the aligned case */
{ if ( dbit == 0 )
mask = 0;
else
set_mono_left_mask(mask, dbit);
for ( ; ; )
{ int count = wleft;
/* Do first partial chunk. */
if ( mask )
write_store_masked(cfetch_aligned(bptr), mask, 0);
else
write_store(cfetch_aligned(bptr));
/* Do full chunks. */
while ( (count -= chunk_bits) >= 0 )
{ next_x_chunk;
write_store(cfetch_aligned(bptr));
}
/* Do last chunk */
if ( count > -chunk_bits )
{ write_store_masked(cfetch_aligned(bptr + chunk_bytes), rmask, 1);
}
end_y_loop(sskip, dskip);
}
}
else /* not aligned */
{ bool case_right =
(skew >= 0 ? true :
((bptr += chunk_bytes), false));
int cskew = -skew & chunk_bit_mask;
skew &= chunk_bit_mask;
set_mono_left_mask(mask, dbit);
for ( ; ; )
{ int count = wleft;
if ( case_right )
bits = cfetch_right(bptr, skew, cskew);
else
bits = cfetch2(bptr - chunk_bytes, cskew, skew);
write_store_masked(bits, mask, 0);
/* Do full chunks. */
while ( count >= chunk_bits )
{ bits = cfetch2(bptr, cskew, skew);
next_x_chunk;
write_store(bits);
count -= chunk_bits;
}
/* Do last chunk */
if ( count > 0 )
{ bits = cfetch_left(bptr, cskew, skew);
if ( count > skew )
bits += cfetch_right(bptr + chunk_bytes, skew, cskew);
write_store_masked(bits, rmask, 1);
}
end_y_loop(sskip, dskip);
}
}
}
#undef end_y_loop
#undef next_x_chunk
#undef optr
if ( (rw -= w) > 0 )
{ x += w;
w = tiles->size.x;
bptr = base;
skew = dbit = x & chunk_align_bit_mask;
goto outer;
}
return 0;
#endif /* !USE_COPY_ROP */
}
#endif /**************** ****************/
/* ================ "Word"-oriented device ================ */
/* Note that on a big-endian machine, this is the same as the */
/* standard byte-oriented-device. */
#if !arch_is_big_endian
/* Procedures */
private dev_proc_copy_mono(mem1_word_copy_mono);
private dev_proc_fill_rectangle(mem1_word_fill_rectangle);
#define mem1_word_strip_tile_rectangle gx_default_strip_tile_rectangle
/* Here is the device descriptor. */
const gx_device_memory far_data mem_mono_word_device =
mem_full_alpha_device("image1w", 0, 1, mem_open,
mem_mono_map_rgb_color, mem_mono_map_color_rgb,
mem1_word_copy_mono, gx_default_copy_color, mem1_word_fill_rectangle,
mem_word_get_bits, gx_default_map_cmyk_color, gx_no_copy_alpha,
mem1_word_strip_tile_rectangle, gx_no_strip_copy_rop);
/* Fill a rectangle with a color. */
private int
mem1_word_fill_rectangle(gx_device *dev, int x, int y, int w, int h,
gx_color_index color)
{ byte *base;
uint raster;
fit_fill(dev, x, y, w, h);
base = scan_line_base(mdev, y);
raster = mdev->raster;
mem_swap_byte_rect(base, raster, x, w, h, true);
bits_fill_rectangle(base, x, raster, -(mono_fill_chunk)color, w, h);
mem_swap_byte_rect(base, raster, x, w, h, true);
return 0;
}
/* Copy a bitmap. */
private int
mem1_word_copy_mono(gx_device *dev,
const byte *base, int sourcex, int sraster, gx_bitmap_id id,
int x, int y, int w, int h, gx_color_index zero, gx_color_index one)
{ byte *row;
uint raster;
bool store;
fit_copy(dev, base, sourcex, sraster, id, x, y, w, h);
row = scan_line_base(mdev, y);
raster = mdev->raster;
store = (zero != gx_no_color_index && one != gx_no_color_index);
mem_swap_byte_rect(row, raster, x, w, h, store);
mem_mono_copy_mono(dev, base, sourcex, sraster, id,
x, y, w, h, zero, one);
mem_swap_byte_rect(row, raster, x, w, h, false);
return 0;
}
#endif /* !arch_is_big_endian */